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On the exactly soluble model in quantum electrodynamics 

N N Bogolubov Jr, Fam Le Kien and A S Shumovsky 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head Post Office 
PO Box 79, Moscow, USSR 

Received 16 January 1985, in final form 6 June 1985 

Abstract. The model of a ladder configuration three-level atom interacting with a two-mode 
near-resonant radiation field is treated. It is shown that the operator equations of motion 
can be solved explicitly. The dynamical behaviour of the photon numbers and level 
populations is studied for various initial conditions. 

1. Introduction 

The problem of the three-level atom interacting with the electromagnetic field is the 
object of much research activity over the last ten years. It is central to discussions of 
two-photon coherence [ 1,2], resonance Raman scattering and double-resonance 
processes [3], three-level super-radiance [4,5], two-mode laser [6], three-level echoes 
[7] and population dynamics and spectra of a driven three-level system [8-111. 

A number of recent papers have been dedicated to a careful consideration of the 
problem of dynamics of a single three-level atom interacting with two resonant modes 
of the radiation field. The semiclassical formalism for the treatment of this problem 
has been discussed [8, 9, 12, 131. In another series of articles [6, 11, 14, 151 the fully 
quantised theory has been studied. Exact Schrodinger wavefunctions have been 
obtained for some special initial states [6, 111. In the work of Li and Bei [14] the 
explicit expression of the evolution operator has been derived in the interaction picture 
for the case of exact one-photon resonance. The rigorous examination of the dynamical 
behaviour of level populations and photon numbers has been realised in the Heisenberg 
picture by Bogolubov er a1 [ 151 for the three-level two-photon lambda configuration. 
On the other hand, the exact solution of the nonlinear equation for the energy operator 
of a few-level atom interacting with a single-mode radiation field has been obtained 
by Buck and Sukumar [16]. In this paper we shall show that the operator equations 
for the three-level two-photon ladder configuration detuned from one-photon resonance 
can be solved explicitly. By using the exact solution obtained here we shall examine 
the dynamical behaviour of photon numbers and level populations for arbitrary initial 
states of the field. 

The remainder of this paper is organised as follows. Section 2 gives the model 
Hamiltonian and § 3 shows the exact solution of operator equations for level popula- 
tions and photon numbers. In § 4 the time evolution of photon numbers and level 
populations in the case of quantum initial states is considered, while 0 5 gives the time 
evolution of photon numbers and level populations in the case of an arbitrary initial 
field. We give a summary in § 6. 
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2. The model Hamiltonian 

We consider a three-level atom of ladder configuration (see figure 1) in which non-zero 
dipole moments exist only between levels 1 and 3, and between 2 and 3. The dipole 
transition between levels 1 and 2 is thus forbidden. Let the atom be at rest in a lossless 
cavity and interact with a two-mode radiation field. The energy operator for the atom 
is 

1 
-1 

Figure 1. A ladder configuration three-level atom interacting with a two-mode near-resonant 
radiation field. 

Here, the operator djj = /j)(jl describes the population of level j and hOj is the 
corresponding energy. The atomic eigenstate vectors l j )  ( j  = 1,2,3) form the basis of 
the state space of the three-level atom 

The field Hamiltonian is 

The operators a*,, a^: describe near-resonant mode a of the radiation field in the cavity. 
The corresponding frequencies of the modes are w,, where i (w,  - In, -Cl,I)l<< U,. The 
atom-field interaction is described in the dipole and rotating wave approximations by 
~ 7 1  

Here, the operator dij = li)(jl describes the atomic transition from level j to level i 
( i  # j). The parameters g, are the constants of atom-mode coupling. Thus, the total 
model Hamiltonian of the ‘atom-field’ system is 

A = fiA+ AF+ AAF 
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Note that the operators kij = li)(j/ (i, j = 1,2,3)  are the generators of the group SU(3) 
and obey the following relations: 

A A  * 
RyRkl = & 8 k j  (6) 

A,, = 1. 
i = l  

(7)  

By using (6) the commutation rules 

[ 1 = f i d s k ,  - A k j s i l  (8) 

are quickly established [4]. The commutation relations of the photon operators a*,, a*: 
(a  = 1,2)  are 

[a,, a,,] = sa,, [a*,, a ,̂.] = 0 [a*: ,  a*:,] = 0. (9) * *+ 

Assuming that there is exact two-photon resonance, the detuning parameter A can be 
defined as 

A =  (R3-R,)-w,= wz-(R,-R3). (10) 

3. Exact solution of operator equations for level populations and photon numbers 

Starting from the Hamiltonian ( 5 )  and the commutators (8) and (9) ,we write down 
the Heisenberg equations for various operators in the usual way, i.e., $= (i/ri)[$, 81. 
It is convenient to define the subsidiary operators 

A,  = i(a*,A3, - a*:RI3) 
(11) 

A 2  i ( a * 2 A 2 3  - a * ~ i 3 2 ) .  

Then the Heisenber e uations for the level population operators A,, and the photon 
number operators Nu = aaaa (CY = 1,2)  are quickly established: g 

R , , ( t )  = i+,(t) = g1A1(t) 

A,,( t )  = -I?,( t )  = -g2A2( t) .  
(12) 

It follows that 

where Ma are time-independent operators. 
By using the relations (6) the Heisenberg equations for A, are found to be 

A l ( t )  = -A&l(r)+2gl(&?l+ 1)[1 - 2 Z ? , l ( t ) - ~ 2 2 ( t ) ] - g 2 6 ( t )  

A,( t )  = Ak2(t) - 2 g 2 ( i 2 +  1)[ 1 -2k22(t)  - k l l ( t ) ] + g 1 6 (  t )  
(14) 

where 
A 

* + A +  A B = a*,a*282, + a ,  a 2  R I 2  

(15)  & = A  , - a,  R31 A + a*:A13 

e = -  2 -  a 2 ~ 2 3 + a * l R 3 2 .  A 
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The operators fi and e, obey the following equations of motion: 
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& t ) =  -gl(A,+l)a2(t)+g2(A2+l)~l(f)  

el( t )  = A i l (  t )  + g 2 d (  t )  

e,( t )  = -AA2(  t )  - g1$ t )  

where 

d= i(61i2d21 - a*:6:dl,). (17) 

d( t )  = g,( Al + 1) e,( t )  - g2( A, + 1) el ( t ) .  

Finally, the Heisenberg equation for the operator 6 is found to be 

(18) 

The equations (12), (14), (16) and (18) form a closed linear system which has the 

-glg2fi(t) + g:(A, + 1)dz2(t)  + g:(A2+ l)dll(t) = constant = Ez 
g1 el( t )  + g2e2( t )  -A[ R I , (  t )  + dZ2( t ) ]  = constant = 6. 

following two integrals of motion: 

(19) 

$ere k and e are time-iridependent operators. It is easy to establish that the operators 
Ma, k and Q commute with A and each other. Taking into account (19) one can 
obtain from (12), (14), (16) and (18) the operator equations 

f f ,  l (  t )  = -(3Ii  + Ii)dll( t )  - 31:d2,( t )  - Ag, e,( t )  + 2If+ k 
f f 2 , ( t )  = -(3i:+A2)dll(f)  - ( 3 ~ ~ + ~ ~ + A 2 ) d , 2 ( t ) + A g , ~ l ( t ) + 2 1 ~ +  k - A 0  (20) 

g l e l (  t )  = A i l l (  t )  + AIi[dll( t )  + d2,( t ) ]  --Iigle1( t )  +I:6. 
Here we have introduced the notation 

I, = g,(Am + l ) l ’ 2  

0- =r2  A i + A 2 )  ^ 2  . 
To solve the system of second-order differential equations (20) we ought to determine 
the eigenvalues of the characteristic matrix. This leads to the following equation: 

22- (3 i f  + I:) -3 i ;  -iA 
de( -(3i:+A2) 2*- (3 i ;+ i ;+A2)  iA ) 

iA(i :  - 2’) i A i i  2 2  - I; 

= ~ 6 - 2 ( 3 i ~ + A 2 ) 2 4 + ( 3 i ~ + A 2 ) 2 . ? 2 - I ~ ( 4 1 ~ + A 2 )  = 0. (22) 

A -  = A -;A. (23) 

The solutions of this equation are found to be i,, I- and 21, where 
1 1  i- ( i i + a A 2 ) ’ / 2  i, = i +$A 

They are the operators of the frequencies of nonlinear optical oscillations in the 
three-level system [9,11, 181. Now the solution of the system (20) can be presented 
in the form 

R 1 ( t ) = P+ ( t ) + P_( t ) + i; P( t ) + d 1 1 ( 0) 

t )  = -F+( t )  - P-( t )  + i:P( t )  + d22(0) 
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B ( t )  = ;(cos 2 i t  - 1) + p* sin 2 i t .  

The amplitude operators E+, r.2, i+ and 

k = {i;I?ll(0)+i:I?22(0) -~61?33(0)+g1g2~(0)+~A[gl&1(0)+g2&2(0)]}/(2~~~2) 

are found to be 

;* = [I?ll(o) - I ? 2 2 ( o ) ] i : i : / ( i ~ n i * ) + ~ l g 2 ~ ( o ) ( i ~ - i ~ ) / ( 2 i ~ i i * )  

i = [g1&0) -g2A2(0)1/(2i3) 

i* = [i;g1&0) +i:g,A2(o)]/(21gi) * g*g26(0) / (2 i i J .  

* [i:g,&,(o) -i:gze,(o)]/(2n6i) (26) 

By using the conservation laws (7) and (13) together with (24) one can obtain 

k 3 3 (  2 )  = -X i? (  2 )  + I ? 3 3 ( 0 )  

f i l ( t )  = ?+( t )  + B-( t )  + i:& t )  + Al(0) 

f i 2 (  t )  = ?+( 1 )  + ?-( t )  -i;& t )  + f i2 (0) .  

(27) 

The exact solution (24) of the operator equations (20) and the formulae (27) represent 
the explicit expressions of time dependence for the level population and photon number 
operators. 

From (25) it is clear that the operators i+, i- and 2 i  are the quantum electrodynamic 
expressions for the two-photon Rabi frequencies [ 111. Under the condition of one- 
photon resonance we have A = 0, and therefore i+ = i- = I. In this case there are two 
branches of the two-photon Rabi frequencies defined by the operators i and 2 i  [ 14,151. 
It should be noted that the existence of the 'soft branch' is a characteristic feature of 
the three-level system. Such a kind of oscillation frequency is absent in the two-level 
system [ 17,19,20]. Our present results show that the detuning in the case of two-photon 
resonance leads to the splitting of the 'soft branch' to two branches characterised by 
the frequency operators i+ = i +;A, = i -;A. This conclusion of the fully quantised 
theory is in accord with the results of the semiclassical theory [8, 9, 131. 

4. Time evolution of photon numbers and level populations in the case of quantum 
initial states 

Let b(0) be a density matrix corresponding to some initial state of the 'atom-field' 
system. Then the mean values of the level populations and photon numbers are given 
by 

(28) 

where 6 is I?j, or fie. 
First of all, let us consider a simple but interesting case when at the initial moment 

t = 0 the atom is on a level i and the field is in a quantum state with definite occupation 
numbers In,, n2) .  Then 

(6( t ) )  = Tr 8( t ) @ ( O )  

= l { " ~ o ~ l  I {md)=  t i ;  n l ,  n2) .  (29) 
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One can easily see that the initial state ){mo}) is one of the basis states of the total 
system. Thus, the density matrix b(0)  has only one non-zero element in the basis 
representation 

(30) 

On the other hand, the operators f i a  are diagonal in this representation. So, for an 
arbitrary operator b and arbitrary function f (  ) we have 

pjm,i,(m,,) E ({m’}lp*(O)l{m”)) = S,m’} . ,m, }S ,m. ’ i , (m, } .  

Below we shall use the following notation (a}= 0. Now by using the relation (31) we 
can obtain from (24) and (27) that 

R l l ( ~ ) = - 2 p + s i n 2 ~ A + ~ - 2 p ~ s ~ n 2 f A ~ ~ - 2 A ~ ~  s in’At+R, , (O)  

Rz2( t )  = 2p+ sin’ f A + f  +2p-  sin’ f A - t  - 2A:p sin’ A t  + R Z 2 ( 0 )  

R33( t )  = 2Aip sin2 A t  + R33(0) (32)  

N , ( t )  = -2p+ sin2fA+t - 2 p -  sin2fA-t -2A:p  sin2At+n, 

N2( t )  = -2pT  sin2 &A,t - 2p-  sin’ &A-t  + 2A:p sin’ A t  + n2. 

Here the frequencies A + ,  A -  and 2 A  of the two-photon Rabi oscillations in the system 
are defined by 

A = ( A ; + $ A ~ ) ~ / ~  A +  = A + + A  A - = A - ~ A  (33) 
where 

ho = ( A  :+ A : ) ” ~  A I  = g , ( n ,  - R,,(O) + 1)1’2  A2=g2(n2+R22(0 ) ) I ’2 .  (34 )  

The amplitudes of the oscillations are found from (26) to be 

p = p+ = p- = O .  

For the sake of eliminating the above-mentioned fast oscillations and obtaining the 
time-average values of the mean level populations and photon numbers, we use the 
following procedure: 

t + T  

2 T  1-T 

- 1  0=- 5 O ( t ’ )  dt’ T>>A-’ 

for O ( t ) = R j j ( r ) ,  N , ( t ) .  
Then, in compliance with (32) we have 

R I ,  = -(p+ + CL- + h : p )  + R , , ( o )  

E 3 3  = + R33(0) 

R 2 2  = P+ + p- - A :P + R22(0) 

NI = - ( p + + p - + A : p ) +  n, 

N,= - ( p + + p - - A i p ) + n 2 .  

(37 )  
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Let us now concretise the initial condition (29) and find the values of the frequencies 
and amplitudes corresponding to the cases when the atom is initially in the state 1 ,2 ,3 ,  
respectively. 

Case 1 .  Let the atom be in the unexcited state 11) at t =0,  i.e. /{mo))  = 11; n , ,  n2). 
In this case we have Rl , (0 )  = 1 ,  R22(0)  = R33(0) = 0. From (33)-(35) it follows that 

A = w({nu))  Ao,* = Wo,*({nu}) 

A1 = g 1 f i  A 2  = g 2 f i  

where we have introduced the notation 

Wo({n,}) = Wo(n,, n2) = ( g h 1  +8:n2)1/2 

W({na))= W(n,, n,)=(g:n,+g:n,+,A 1 
W*({n,))= W*(n,, n,)=(g:n,+g:n,+,A 1 2 1 112 *.A. 

(39) 1 2 1 / 2  

Case 2. Let the atom be in the upper state 2 at t = 0, thus I{mo}) = 12; n , ,  n2) .  Then 
we have R2,(0)  = 1,  R,,(O) = R33(0) = 0. Equations (33)-(35) in this case give 

A = W ( { n ,  + 1)) Ao,* = WO,*({% + 1)) 

A I  = g , ( n ,  + 1)’12 A, = g2( n2+  1)’/* 

Case 3. Let the atom be in the immediate state 3 at t = 0, i.e. I{mo}) = 13; n,, n 2 ) .  
In this case we have R3,(0) = 1 ,  Rll (0)  = RZ2(0)  = 0. From (33)-(35) one can find that 

1 
p, = 0. 

cL = - 2  W’(n,+l ,  n2)  

Note that the expressions (32) together with (38), (40) and (41) are in compliance 
with the results of [9] and [ l l ] .  

To determine the transition probabilities of the atom, let us introduce the Schrodin- 
ger representation with a wavefunction of the total system I $ ( t ) ) ,  where I$(O))= 
l i ;  n , ,  n 2 ) .  Then, the probability of finding the atom on itsjth level at time t as a result 
of the transition i + j initiated by the n ,  0 n2 photon field can be defined by the formula 
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It is seen that under the initial condition (43) the population Rjj( t )  of level j is equal 
to the probability P ( f ;  i + j ) .  Hence, by using (32) together with (38), (40) and (41) 
one can determine the probabilities of various transitions in the system. In particular, 
for the two-photon processes of absorption (1 + 2) and emission ( 2 +  1) one obtains [21] 

For the one-photon transitions 3*a (a = 1,2)  we find 

sin2[ W(n, + 1, n2)t] g:n2 
W2(n, + 1, nz) 

P( t : 3 + 2) = 

The expressions (44) and (45) are in compliance with the results of [9] and [l l] .  

5. Time evolution of photon numbers and level populations in the case of arbitrary 
initial field 

Now we consider the case when the field is initially in some state described by the 
density matrix pIF whereas the atom is in level i. The total density matrix of the 
‘atom-field’ system is 

pI(0) = p)(i/@pIF. (46) 

P*F= 121, z2>(z19 z21 (47) 

In the case of initially coherent field the matrix pIF takes the form [22] 

where the coherent state IZ,, 2,) is defined by 
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In the case of an initially chaotic field $F is 

&= exP(-PfiF)/z  exp(-Pfi,). (49) 

Here the field Hamiltonian fi, is given by ( 3 )  and P - ’  is the temperature of the initial 
field. 

It is seen from (24)-(27) that the operators & ( t )  and $.,(t) ?re diagonal in the 
state subspaces (11 ; n , ,  n 2 ) } ,  {12; n , ,  n 2 ) }  and {13; n , ,  n,)}, i.e. for 0 = R , ( t ) ,  Nu( t )  one has 

(50) ( i :  n i ,  n;161!; n l ,  n i ) =  a n i , n + n i , ; ( i ;  n : ,  n i l b l i ;  n i ,  nk). 

Hence the mean value of 6 in the initial state (46) is found to be 

(6) = Tr 6P(O)  = ( 6 ) i n l n 2 P ( n l ,  n 2 )  
n1.n2 

where (I!?)~,,~,,~ is the mean value of 6 in the initial state (29) 

and P(n,, n 2 )  is the weight factor defined by the field density matrix & 

Thus, by using relation (51) and (32), together with (38), (40) and (41), one can obtain 
the mean values of the level populations and photon numbers in the general case. In 
particular, we find 

for the case b(0) = 11)(11@& when the atom is initially on the lower level 1. For the 
other case when the atom is initially on the upper level 2, and therefore P(0) = 12)(21@&, 
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we obtain 

For illustration we calculate the time variation of the photon numbers 6Nu( t )  = 
Nu( t )  - Nu(0)  for the case when the atom is initially unexcited on level 1 and the field 
is in state (47) or (49). 

5.1. Initially coherent j e l d  

First we consider the case when the field is initially in the coherent state (47). In this 
case, according to (48) and (53), we have 

P (  n,, n 2 )  = exp[ -( iil + i i 2 ) ] i i ; l i i ; 7 / (  n,! n2!). (56) 

Here iil = /2,1’ and ii2 = I.Z2l2 are the mean photon numbers in modes 1 and 2, 
respectively, at the initial time of the interaction. 

Substituting (56) into (54) and by using (39) we can now calculate the time evolution 
of 6 N , ( t )  and 6 N 2 ( t ) .  The results of calculations for the case g , = g , = g ,  A = O ,  
iil = ii2 = 5 are shown in figure 2 by sketching the simple lines coupling the peak points 
obtained. From the figure we see that the expectation values of the photon numbers 
and, hence, also the expectation values of the level populations have oscillations which 
decay rapidly at short times but periodically regenerate to larger amplitudes on a much 
longer timescale. Such quantum collapses and revivals in a loss-free system have been 
predicted in the coherent state Jaynes-Cummings model [23] and in the lambda 
configuration three-level model [ 14,241. 

Note that the maximum of the second revival of 6Nu ( t )  in the case considered in 
figure 2 is remarkably larger than the maximum of the first revival. Such a feature is 
absent in the Jaynes-Cummings model [23]. We can explain this feature of the 
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i . . . . . . ' " '  
40 80 120 160 200 

40 80 120 160 200 

g t  

Figure 2. Time evolution of the photon numbers in the case of the initially coherent field 
(for g, = g, = g, A = 0, A,  = ti, = 5 ) .  

three-level two-mode results by the existence of different kinds of revival which have 
different periods and maxima owing to the variety of the Rabi frequency branches 
W,(n, ,  nJ ,  i.e. l* (or I), and 2W(n, ,  n 2 ) ,  i.e. 2 i ,  of the sums in (54). The second 
revival of 6N, ( t )  in figure 2 belongs to the kind defined by the sums with the oscillation 
factors sin2($ W * t )  whilst the previous small revival pertains to the kind defined by the 
sums with the oscillation factors sin2( Wt) .  Hence we can easily understand why the 
monotonous decreasing behaviour of the revival maxima in the model with one Rabi 
frequency branch [23] does not occur in the model considered here. 

5.2. Initially chaotic jield 

We consider now the case when the field is initially in the chaotic (thermal) state (49). 
Then, the weight factor P ( n l ,  n 2 )  takes the form 

P(n,, n 2 )  = Z-' exp[-P( hw,n, + hw2n2)] (57) 

Z- '= [ I  -exp(-phw,)][l -exp(-phw,)]. ( 5 8 )  

The time behaviour of S N , ( t )  and SN2( t )  has been calculated for g, = g2  = g, hw,P = 
hw2P =0.2, A = O ,  and is sketched by the simple lines connecting the peak points in 
figure 3. The collapse at short times, the flat feature before the revival of the rapid 
oscillations and the long and non-regular (chaotic) characters of the last are seen. 
Such a behaviour has been noted in [ 2 5 ]  for the Jaynes-Cummings model in the case 
of the initially chaotic field. 

Thus, we see from the two examples described above that the quantum collapse 
and revival are possible in the loss-free three-level two-mode model. These effects are 
due to the spread of Rabi frequencies and the quantum nature of the cavity radiation 

where 
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- 
c - - 0 . 4  - 5 - 0 . 6  

- O . * ~  40 80 120 160 200 

0 i b l  

- - 0 . 4  

S - 0.6 

- 0 . 8  
U3 

40 80 120 160 200 

2 - o , 2 ~  Figure 3. Time evolution of the g f  photon numbers in the case of the initially chaotic field 

(for g, = g, = g, h = 0, hw,P = hw,P = 0.2). 

field which manifests itself in the discreteness of the photon numbers in statistical 
averaging [25]. Therefore, the influences of the level and mode numbers appear only 
in the quantitative characteristics and some fine features of the phenomena. It is why 
our results look very similar to those of the Jaynes-Cummings model [23,25].  

6. Conclusion 

In this paper the operator equatims for the ladder configuration three-level atom 
interacting with a two-mode quantised radiation field have been solved explicitly in 
the two-photon resonance condition. The quantum electrodynamic expressions of 
two-photon Rabi frequencies have been found. The time evolution of the photon 
numbers and level populations has been examined. It has been shown that the quantum 
revival and collapse are possible in the loss-free three-level two-mode model. The 
large size of the maximum of the second revival compared with that of the first has 
been noted in the case of the initially coherent field. We emphasise that some of our 
particular results can easily be obtained by diagonalising the Hamiltonian and using 
the dressed-state formalism. More detailed study of the revivals and collapses and an 
investigation of the photon statistical properties will be the subject of a subsequent 
paper. 
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